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Molecular simulation of compressive failure in 
poly(p-phenylene teraphthalamide) crystals 

D. J. LACKS 
Department of Chemical Engineering, Tulane University, New Orleans, LA 70118 USA 

Molecular mechanics simulations are carried out on crystals of poly(p-phenylene 
teraphthalamide) (PPTA) as a function of an applied axial compressive stress. The 
vibrational frequencies of the long wavelength acoustic modes which propagate along the 
chain axis and are polarized perpendicular to the plane of the hydrogen-bonded sheets are 
found to become imaginary when the imposed stress exceeds the modulus for shear 
between hydrogen-bonded sheets. The imaginary frequencies denote an elastic buckling 
instability. This instability occurs at a compressive stress of 0.3 GPa, in good agreement with 
the experimental result for the stress which causes material failure in PPTA fibres. It is 
suggested that previous overestimates of compressive strengths based on elastic buckling 
models occurred due to the use of the torsion modulus as the relevant shear modulus; 
however, the torsion modulus is not relevant because it represents an average of shear 
moduli in different directions, while elastic buckling takes place along the direction of easiest 
shear. 

1. Introduction 
Fibres composed of poly(p-phenylene teraphthalam- 
ide) (PPTA) ar e widely used in composite materials, 
under the trade name Kevlar | These fibres have 
very good axial tensile strength, but their axial com- 
pressive strength is poor. The compressive strength is 
an order of magnitude less than the tensile strength 
[1], and compressive failure occurs at axial stresses of 
approximately 0.3 GPa [-2]. Poor compressive prop- 
erties are characteristic of many rigid-rod polymer 
fibres. The molecular origins of this compressive fail- 
ure are not yet clear, due in part to the difficulty of 
carrying out experiments on the extremely narrow 
fibres. 

Compressive failure in PPTA and other rigid-rod 
polymers has usually been attributed to a shear failure 
[-2, 3, 4, 5]. The nature of the shear failure, however, is 
not well understood. DeTeresa et al. suggest that the 
failure is initiated by an elastic buckling instability, 
which is predicted to occur when the compressive 
stress exceeds the shear modulus [5]. Although experi- 
ments have demonstrated some correlation between 
compressive strengths and shear moduli of polymer 
fibres, compressive strengths are always found to 
be significantly lower than the shear moduli [-6, 7]. 
Vlattas and Galiotis suggest that an inelastic shear 
instability precedes the elastic instability, to account 
for the compressive strength being lower than the 
shear modulus [2]. An inelastic instability, limited by 
the shear strength rather than the shear modulus, can 
arise from misorientations of the crystallites with re- 
spect to the fibre axis [-8]. 
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2. Computational method 
Molecular simulations are carried out which focus on 
elastic instabilities in perfect crystals of PPTA. The 
effects of stress on the crystal structure are determined 
by minimizing the enthalpy (potential energy plus 
stress-strain energy) with respect to the atomic coor- 
dinates and lattice parameters. Elastic instabilities are 
detected from the stress dependence of the vibrational 
frequencies - an elastic instability occurs when the 
vibrational frequency of a mode decreases to zero and 
becomes imaginary (the vibrational frequencies de- 
pend on the crystal structure, and vary with stress due 
to changes in the structure with stress) [-9]. An imagi- 
nary vibrational frequency implies that the atomic 
motion corresponding to that mode becomes non- 
oscillatory, and that the imposed crystal structure 
represents a saddle point rather than an energy min- 
imum. The axial Young's modulus is obtained from 
the slope of the stress-strain curve, and the shear 
moduli are obtained from the appropriate second de- 
rivatives of the potential energy. 

An infinite three-dimensional crystal is considered 
in the present simulations, and Ewald methods are 
used to evaluate the coulombic and dispersion energy 
sums [10]. Analytical first and second derivatives of 
the potential energy with respect to the atomic coordi- 
nates are calculated for use in geometry optimizations 
and the calculation of vibrational frequencies. Reci- 
procal-space (Brillouin zone) methods are used in the 
calculation of vibrational frequencies to allow the inclu- 
sion of long-wavelength vibrations [-9]. The PCFF 
force field [-11] is used for the potential energy surface. 
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T A B L E  I Structural parameters and relevant elastic moduli of 
PPTA at zero stress. Note that for shear, only one modulus is 
obtained experimentally (from torsion experiments) 

Simulation Experiment 

a (nm) 0.788 0.780 a 
b (nm) 0.513 0.519 a 
c (nm) 1.297 1.290 a 
7( ~ ) 90.75 90 a 
E~ (GPa) 311 240 b 
Gbo (GPa) 12.1 1.1 c, 1.2 a, 1.4 ~ 1.9 f, 2.0 g 
Ga, (Gpa) 0.34 

~ reference 12. 
b extrapolation to complete chain orientation, reference 14. 
Cfor Kev!ar 149, reference 7. 
a for Kevtar 49, reference 6. 

for Kevlar 49, reference 7. 
ffor Kevlar 29, reference 7. 
gfor Kevlar 49, reference 17. 

Figure 1 Monomer  unit and crystal structure of PPTA. Key: car- 
bon (black, backbone); hydrogen (white); oxygen (black, pendant); 
nitrogen (grey). 

The crystal structure of PPTA, shown in Fig. 1, 
consists of hydrogen-bonded sheets parallel to the b~c 
plane. This aspect of the structure leads to significant 
anisotropy in the directions transverse to the chain 
axis - the forces along the b-axis are dominated by 
hydrogen bonding, and the forces along the a-axis are 
dominated by weaker dispersion interactions. 

3. Results 
The results for the structural parameters and relevant 
elastic parameters at zero stress are given in Table I. 
The structural parameters are in good agreement with 
the experimental values [12]. Although the elastic 
parameters do not agree as well with experiment, these 
results agree well with previous calculations [13]. 
Much of the overestimate of the axial Young's 
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modulus in comparison with experiment [14] can be 
attributed to the neglect of thermal effects in the pre- 
sent calculation, which have been shown to signifi- 
cantly lower the calculated Young's modulus in PPTA 
[15-]; these thermal effects would not affect the present 
conclus!ons, and are therefore not included in the 
present study. Some of the disagreement with the 
experimental Young's modulus is also likely to be due 
to experimental error: the difficulties in determining 
experimentally the ultimate properties of polymers are 
well known [163. A detailed discussion of the cal- 
culated and experimental [6, 7, 173 shear moduli will 
be given below, but it is noted here that previous 
investigations have also found shear to be easier be- 
tween hydrogen-bonded sheets (Gac) than within the 
sheets (Gbo) [13, 18]. 

The vibrational frequencies of the transverse acous- 
tic modes propagating along the chain axis, depicted 
schematically in Fig. 2, were calculated as a function of 

a o r b  

( 

( 

Figure 2 Schematic of the transverse acoustic vibrational modes 
which propagate along the chain axis. The lines represent polymer 
chains. The horizontal axis is the a-axis for modes polarized along 
the a-axis, and it is the b-axis for modes polarized along the b-axis. 
The wavevector k is related to the wavelength of vibration, L, by 
k = 2n/)~. 



the wavevector k. Axial compression has the effect of 
decreasing the frequencies of these vibrational modes. 
As shown in Fig. 3a, the frequencies of the long 
wavelength vibrations polarized along the a-axis de- 
crease to zero and become imaginary for stresses be- 
tween 0.3 GPa and 0.35 GPa (note that imaginary 
frequencies are displayed in Fig. 3 as negative). At 
a stress of 0.35 GPa the vibrations with wavelengths 
greater than 16.0 nm are unstable (the wavelength of 
a vibration is 2~/k). These instabilities occur only 
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Figure 3 Vibrational frequencies for transverse acoustic modes 
which propagate along the chain axis, as a function of the wavevec- 
tor k. (a) Modes polarized along the a-axis; (b) Modes polarized 
along the b-axis. Note that imaginary frequencies are displayed as 
negative, cy = (0)  0, (~) 0.15, (O) 0.3, (A) 0.35 GPa.  

along the a-axis (between hydrogen-bonded sheets), 
and as shown in Fig. 3b, the effects of compression are 
very minor for the vibrations polarized along the 
b-axis (within hydrogen-bonded sheets). This result 
agrees with experimental results which indicate that 
compression-induced shear deformation occurs only 
between hydrogen-bonded sheets [3]. 

These unstable vibrational modes signify that the 
zero-stress crystal structure becomes unstable at a 
compressive stress between 0.30 and 0.35 GPa. The 
new crystal structure will have a much larger unit cell 
along the chain axis. The stress at which the instability 
occurs is essentially equal to Ga~, the calculated 
modulus for shear between hydrogen-bonded sheets. 
Although the calculations were carried out on an 
infinite crystal, the results are relevant to finite crystal- 
lites because the wavelength of the unstable vibrations 
are smaller than the axial dimension of crystallites in 
PPTA fibres (approximately 80 nm) [19]. 

The elastic instability will be manifested in a defor- 
mation of the crystal structure corresponding to the 
atomic motion in the unstable vibrational modes 
(shown in Fig. 2). These deformations correspond 
exactly to the elastic buckling instabilities proposed 
by DeTeresa et al. [5]. Also, as proposed by DeTeresa 
et al., this elastic instability occurs when the imposed 
stress exceeds the relevant shear modulus. 

This elastic buckling mechanism differs from the 
bending deformation observed in previous molecular 
simulations of other rigid rod polymers at compres- 
sive strains of 2% [20]. Similar deformations were 
observed in the present PPTA simulations at stresses 
of approximately 3 GPa (which corresponds to strains 
slightly greater than 1%). The bending deformation 
corresponds to optical vibrational modes, and the 
molecular distortions occur identically in every mono- 
mer unit. In contrast, the elastic buckling instabilities 
correspond to long wavelength acoustic vibrational 
modes, where the molecular distortions are spread out 
over many monomer units. The elastic buckling in- 
stabilities consequently involve much smaller changes 
in bond angles and torsions and lead to smaller poten- 
tial energy penalties, allowing them to occur at signifi- 
cantly lower compressive stresses. The elastic buckling 
instabilities correspond more closely to the long 
wavelength vibrational motions observed in previous 
single-chain molecular dynamics simulations [21]. 

4. Discussion 
The present calculations predict compressive failure in 
PPTA crystals between 0.3 GPa and 0.35 GPa due to 
the elastic buckling mechanism proposed by DeTeresa 
et al.; this compressive strength is in very good agree- 
ment with the experimental result of approximately 
0.3 GPa [2]. Such good agreement with experiment is 
at first surprising, since previous analyses of the elastic 
buckling model have concluded that the model leads 
to significant overestimates of the compressive 
strength [2, 5, 6]. These previous analyses have been 
based on shear moduli obtained from torsion experi- 
ments. It is proposed here that the torsion moduli are 
not the appropriate shear moduli to be used in regard 
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to the elastic buckling model - the elastic buckling will 
be limited by the direction of easiest shear (i.e. between 
hydrogen-bonded sheets), while the torsion modulus 
represents an average over shear in different direc- 
tions. 

Investigations of the morphology of PPTA fibres 
with electron diffraction techniques by Dobb  et aI. 
have shown that the fibres consist of  radially oriented 
hydrogen bonded sheets, as shown schematically in 
Fig. 4a [22]. This radial orientation has been corrob- 
orated by optical microscopy and interference micro- 
scopy experiments [-23, 24]. If this radial orientation is 
exact, the torsional modulus of the fibre, G, would 
correspond to G,o, the shear modulus between hydro- 
gen-bonded sheets [6]. However, N M R  and X-ray 
diffraction experiments have indicated that the crys- 
tallites in PPTA are significantly smaller than 10 nm 
in the directions transverse to the chain axis [-25,263; it 
seems likely that the many  tiny crystallites will show 
a distribution of sheet orientations, rather than perfect 
radial orientation, as shown schematically in Fig. 4c. 
Based on an aggregate model [27], the torsional 
modulus of such an array of crystallites would corre- 
spond to an average of Gac and Gbc 

G = fGacf(g)cos28d3 + fGuof(8)sin2gd3 (1) 

where f (3 )  is the probabili ty that a crystallite is 
oriented with its hydrogen-bonded sheets at an angle 
8 with the radial direction. It  will be assumed that 
the crystallites show a Gaussian distribution of sheet 

(a) 

orientations with respect to the radial direction 

f(O) = (2rcs) 1/2 e-~2/2' (2) 

where s is the standard deviation of the angle of the 
hydrogen-bonded sheets from the radial direction. 
The resulting torsion modulus G, calculated with the 
Gao and Gbo obtained from the present simulations, is 
shown in Fig. 5 as a function of s. These results show 
that standard deviations on the order of 15-25 ~ ac- 
count for the magnitudes of the observed torsion 
moduli in PPTA fibres (see Table I), and would ex- 
plain the decrease in the torsional modulus in going 
from Kevlar 29 to Kevlar 49 to Kevlar 149 as being 
due to the increase in order observed in the fibres 
[-26, 28] (the increase in order also manifests itself in 
the increase in values of the axial Young's modulus 
[2,26]). 

The present model for compressive failure in PPTA 
would account for the observation that the compres- 
sive strengths of Kevlar  29, Kevlar  49 and Kevlar 149 
fibres are the same within experimental error [2]. 
Previous elastic buckling models, based on experi- 
mental torsion moduli, predict different compressive 
strengths for these fibres due to their different torsion 
moduli. Although the inelastic failure model can ac- 
count for the compressive strengths of these fibres 
being the same, this model would require the cancella- 
tion of effects due to differences in axial crystallite 
misorientations with those due to differences in tor- 
sion moduli [2]. 
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Figure 4 (a) Schematic of radial morphology in PPTA (view along 
fibre axis), after Dob et al. [221; (b) Orientation of crystallites along 
radial direction assuming perfect radial orientation (view along fibre 
axis); (c) Orientation of crystallites assuming deviations from per- 
fect radial orientation. Lines correspond to hydrogen-bonded 
sheets. 
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Figure 5 Torsion modulus of PPTA fibre calculated with the ag- 
gregate model and assuming approximate radial morphology. The 
values of G,c and Gbc are taken from the present calculations, and it 
is assumed that the hydrogen-bonded sheets have a Gaussian distri- 
bution of orientations about the radial direction, with the distribu- 
tion characterized by the standard deviation s. 



The present model would also account for the ob- 
served linear relationship between the compressive 
strength and torsion modulus of a given fibre as 
a function of temperature [7 3. This relationship would 
be expected from the present model if the crystallite 
orientations do not change with temperature, and the 
shear moduli G,o and Gbc have similar temperature 
dependences. 

5.. Conclusions 
Molecular simulations are carried out which suggest 
that the compressive failure in PPTA fibres arises 
from an elastic buckling instability which occurs when 
the compressive stress exceeds the shear modulus be- 
tween hydrogen-bonded sheets. This mechanism is the 
same as that proposed by DeTeresa e t  al. E5]. Pre- 
vious criticisms of this model were based on observa- 
tions that compressive strengths were significantly 
lower than the shear moduli obtained from torsion 
experiments. However, the present results suggest that 
this overestimate occurs because the torsion modulus 
represents an average of shear moduli in different 
directions, whereas the elastic buckling will take place 
along the direction of easiest shear. 
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